НАМ 35 ЛЕТ     НОВОСТИ     E_MAIL

ГЛАВНАЯ  /   НАУЧНАЯ ДЕЯТЕЛЬНОСТЬ / СБОНИК РАБОТ УЧИТЕЛЕЙ
БАРДИН Б.С.
Приоритетные направления, цели и задачи образовательного процесса государственного образовательного учреждения гимназия № 1517
line2_w.jpg (5144 bytes)

Цели и методы преподавания математики
в старших классах гимназии № 1517
Как показывает статистика последних лет по окончании гимназии 1517 все выпускники поступают в вузы. Это означает, что старшеклассники нашей гимназий представляют собой ту часть российской молодежи, которая в качестве основных приоритетов своего ближайшего будущего выбирает дальнейшее образование. Поэтому в преподавании математики мы исходим из того, что наши гимназисты являются молодой сменой российской интеллигенции, образование которой в области фундаментальных дисциплин находится на традиционно высоком уровне.
Мы считаем, что предмет Математика приобретает особое значение прежде всего для тех гимназистов, которые мечтают о профессии в области экономики, техники, науки. Однако как предмет, развивающий логическое мышление и обучающий мыслить абстрактными понятиями, математика очень полезна и для гимназистов, которых привлекает гуманитарная и творческая деятельность.
В этой связи перед преподавателями математики в нашей гимназии встают следующие основные цели, выходящие за рамки требований государственных стандартов средней школы:
во-первых, уровень преподавания математики должен соответствовать как требованиям выпускных экзаменов средней школы, так и вступительных экзаменов российских вузов. Это означает, что преподавание на уроках математики не ограничивается рамками школьного учебника, а ведется с использованием факультативных курсов и пособий для поступающих в вузы. В качестве основных пособий на уроках математики мы используем следующие: "Алгебра и анализ элементарных функций" М.К. Потапова и др. авторов, "Пособие по математике" под редакцией Г.Н. Яковлева, "Сборник конкурсных задач по математике" под редакцией М.И. Сканави, "Алгебра и математический анализ" Н.Я. Виленкина и др. авторов.
Во-вторых, в силу имеющегося различия в преподавании математики в средней и высшей школе математические дисциплины часто вызывают объективные затруднения на первых порах обучения в вузе. Поэтому в качестве одной из наших целей преподавания математики мы видим обеспечение плавного перехода от изучения элементарной математики в старших классах к изучению высшей математики в вузе. По этой причине программу по математике мы дополнили некоторыми разделами высшей математики, такими как : предел последовательности и предел функции в точке, элементы математической логики, комбинаторика, комплексные числа, векторная алгебра и др. Как показывают опросы наших выпускников, а ныне студентов российских вузов, это существенно облегчает их учебу на первых курсах.
В третьих, поскольку в наше время математика является языком современного естествознания и экономики, то очень важно на уроках математики обеспечить интегративную связь с такими предметами, как физика, информатика, экономика. Этого мы добиваемся как подбором задач физического и экономического содержания, так и разъяснением физического, геометрического и механического смысла используемых понятий. Так, например, при изучении процентов мы решаем задачи на сложный банковский процент и задачи на процентную концентрацию растворов и смесей, а при прохождении производной мы разбираем задачи из механики.
В четвертых, изучение математики представляет уникальную возможность тренинга логического и абстрактного мышления. В этой связи значительную часть времени на уроках и при самостоятельной работе учеников занимает решение интересных нестандартных задач. Среди таких задач можно назвать задачи на целые числа, задачи, в которых число неизвестных превышает число уравнений, задачи, имеющие графическое решение.
В рамках данной заметки автору также хотелось изложить некоторые принципы преподавания математики, на которых базируется его деятельность и деятельность его коллег по гимназии:
1. В процессе изучения нового материала, наряду с отработкой методов решения задач, мы акцентируем внимание учащихся на применение повторяющихся математических идей и подходов. Так, например, при изучении тригонометрических уравнений в десятом классе учащимся предлагается самостоятельно решить тригонометрическое уравнение методом разложения на множители, используя имеющийся у них опыт решения алгебраических уравнений данным методом, который был получен в девятом классе. В этом случае учитель ведет урок в виде диалога, задавая наводящие вопросы, помогая ученикам и направляя их работу.
2. В старших классах гимназии мы уделяем большое внимание развитию самостоятельности мышления учащихся. По этой причине домашние задания, предлагаемые учащимся, содержат не менее 20% задач, требующих творческого подхода в решении. Так, например, при изучении алгебраических уравнений в домашнем задании, кроме стандартных уравнений, учащимся предлагается решить уравнения с использованием неравенства о среднем арифметическом и среднем геометрическом.
3. Важное место в учебном процессе мы уделяем индивидуальному подходу в работе с учениками. Наиболее способным и хорошо успевающим ученикам мы даем дополнительные задания в виде задач повышенной трудности, а также в виде самостоятельного изучения разделов, выходящих за рамки программы. При этом обязательно обеспечиваем учеников необходимыми пособиями, а также помогаем в выполнении задания. Например, при изучении темы "Неравенства" ряду гимназистов было предложено самостоятельно разобраться с методами решения неравенств с параметрами. Это задание состояло как из теоретической части - изучение методов решения по книге "Задачи с параметрами" В.В. Амелькина и В.Л. Рабцевича, так и из практической части - непосредственное решение ряда задач.
4. Ежегодно наши учащиеся принимают активное участие в математических олимпиадах, турнирах и интеллектуальных марафонах, проводимых округом, городом и ведущими московскими вузами. Мы проводим специальную подготовку учащихся к олимпиадам, участие гимназистов в олимпиадах планируется и координируется учителями, предлагаем учащимся решать олимпиадные задачи прошлых лет, а после олимпиады обязательно проводятся консультации по разбору наиболее трудных задач и делается акцент на новые математические идеи. Так, например, после участия в Ломоносовском турнире с учениками был проведен разбор нерешенных задач, в котором принимали участие не только участники турнира но и все желающие. Мы гордимся результатами наших гимназистов в окружных, городских, международных олимпиадах. Призовые места - лучшая оценка нашей деятельности.
5. Мы привлекаем учащихся к исследовательской деятельности в соответствии с их интересами и возможностями. Так учащийся 11-го класса Крамарев Иван заинтересовался проблемой нахождения рациональных корней многочлена с целыми коэффициентами. В результате исследования он разработал алгоритм данного действия и составил компьютерную программу. Сейчас Крамарев Иван, выпускник гимназии, награжденный серебряной медалью "За особые успехи в учении", - студент МГУ.
Новгородова Юлия, также выпускница гимназии, награжденная серебряной медалью "За особые успехи в учении", - студентка МАИ. Будучи ученицей 10-го класса, она начала исследовательскую работу о виде многоугольника, получающегося в сечении треугольной призмы плоскостью. В результате она стала автором метода построения сечения, проходящего через три произвольные точки на гранях треугольной призмы.
Элементы самостоятельного исследования присутствуют в творческих заданиях. Часто творческие задания носят интегративный характер и требуют применения знаний не только из области математики, но и из физики, экономики, информатики.

Б. С. Бардин - к. ф.-м. н., преподаватель математики гимназии № 1517,
доцент Московского Авиационного Института

Страница оптимизирована для просмотра в браузерах пятого поколения и выше с разрешением экрана 800х600.

Hosted by uCoz